Application of Multi-Input Volterra Theory to Nonlinear Multi-Degree-of-Freedom Aerodynamic Systems

Maciej Balajewicz,‡ Fred Nitzsche,∗ and Daniel Feszty‡
Carleton University, Ottawa, Ontario K1S 5B6, Canada

This paper presents a reduced-order-modeling approach for nonlinear, multi-degree-of-freedom aerodynamic systems using multi-input Volterra theory. The method is applied to a two-dimensional, 2 degree-of-freedom transonic airfoil undergoing simultaneous forced pitch and heave harmonic oscillations. The so-called Volterra cross kernels are identified and shown to successfully model the aerodynamic nonlinearities associated with the simultaneous pitch and heave motions. The improvements in accuracy over previous approaches that effectively ignored the cross kernels by using superposition are demonstrated.

I. Introduction

Because of the presence of aerodynamic nonlinearities in transonic aeroelasticity, computational fluid dynamics (CFD) has become the most reliable tool for its analysis. However, the large computational resources required for such high-fidelity analysis renders the approach undesirable, especially during the initial and conceptual design stages. As a result, there has been a great deal of interest in reduced-order models (ROMs) of the transonic nonlinear system [1–3]. A ROM is a simplified mathematical model that captures most of the physics of the more complex system under investigation. Among the many ROM methods available, the most popular include proper orthogonal decomposition, harmonic balance, and the Volterra series. Although research into the Volterra series as a ROM for the transonic aerodynamic system has been significant [2–11], several critical issues remain unsolved. In his recent review paper, Silva [3] suggested that the application of the Volterra theory to multi-degree-of-freedom systems has been incomplete. He states that “An important issue that needs to be addressed is the simultaneous excitation of multiple degrees of freedom to properly identify any nonlinear crosscoupling of the degrees of freedom.” All previous applications of the Volterra series to multi-degree-of-freedom aerodynamic systems have been limited to the identification of aerodynamic nonlinearities resulting from individual perturbations of structural modes. Determination of total lift and moment for simultaneous motions required the superposition of the individual nonlinear responses. However, as suggested by Silva [3], the nonlinear nature of the system renders the principle of superposition invalid.

This paper attempts to address this issue by proposing the multi-input Volterra series as a viable ROM method for nonlinear multi-degree-of-freedom aerodynamic systems. The multi-input Volterra series is well suited for this purpose and has been successfully used by researchers in other disciplines [12–16]. The multi-input Volterra series differs from the classical single-input Volterra series through its inclusion of Volterra cross kernels. These cross kernels capture the coupling dynamics between the degrees of freedom of the nonlinear system. The applicability of the multi-input Volterra series to nonlinear aerodynamic systems is illustrated by modeling the transonic, unsteady, two-dimensional, 2 DOF airfoil.

II. Volterra Theory

The Volterra theory of nonlinear systems is quite mature and several texts are available [17,18]. It was first applied to nonlinear engineering problems by Wiener [19] and first applied to subsonic and transonic aerodynamic systems by Tromp and Jenkins [4] and Silva [5], respectively. This section provides a brief summary of the Volterra theory of single- and multi-input nonlinear systems both in continuous and discrete-time domains.

A. Single-Input Volterra Theory

The output $y(t)$ of a continuous-time, causal, time-invariant, fading memory, nonlinear system Ψ, due to a single-input $x(t)$

$$y(t) = \Psi\{x(t)\}$$

(1)
can be modeled using the pth-order Volterra series

$$y(t) = \sum_{\tau_1,\ldots,\tau_p} H_p(t; \tau_1, \ldots, \tau_p) x(\tau_1) \cdots x(\tau_p)$$

(2)

where the pth-order Volterra operator H_p is defined as a p-fold convolution between the input $x(t)$ and the pth-order Volterra kernel $H_p(t; \tau_1, \ldots, \tau_p)$. The identification of Volterra kernels is key to the synthesis of a Volterra ROM. However, analytical derivations of the Volterra kernels in continuous time are only possible if analytical, closed-form expressions of the input–output relationship of the nonlinear system Ψ are available. Unfortunately, many engineering applications of interest including aerodynamic applications lack such closed-form formulations and, instead, rely on numerical solutions of the nonlinear system Ψ. As a result, identification of the Volterra kernels involves the processing of discrete-time outputs due to
specifically tailored training inputs. Consequently, the discrete-time version of the Volterra series using discrete-time Volterra operators and kernels is preferred. For a uniformly sampled, discrete-time representation of the system

$$y[n] = \Psi \{ x[n] \}$$

(3)

where for \(n = 0, 1, \ldots, N \)

$$x[n] = x(t)|_{t=n\Delta T} = x(n\Delta T)$$

$$y[n] = y(t)|_{t=n\Delta T} = y(n\Delta T)$$

(4)

The output \(y[n] \) of a nonlinear system \(\Psi \) due to a single input \(x[n] \) can be modeled using the \(p \)-th order, discrete-time, Volterra series

$$y[n] = \sum_{i=1}^{p} \mathbb{H}_i \frac{\prod_{i=1}^{p} x[k_i]}{\prod_{i=1}^{p} x[k_i]}$$

(5)

where the \(p \)-th order, discrete-time Volterra operator \(\mathbb{H}_i \) is defined as a \(p \)-fold discrete-time convolution between the input \(x[n] \) and the \(p \)-th order, discrete-time Volterra kernels \(H_j[n, \ldots, n] \). Because of the exponentially increasing difficulty inherent in identifying higher-order, discrete-time Volterra kernels, most applications, including aerodynamic ones, use a truncated, second-order (\(p = 2 \)) Volterra series

$$y[n] = \sum_{k=0}^{\infty} H_1[n-k]x[k] + \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} H_2[n-k_1, n-k_2]x[k_1]x[k_2]$$

(6)

Unfortunately, such a low-ordered truncation of the Volterra series restricts its ROM capability to weakly nonlinear systems only. Although precise and generally applicable definitions of weakness are lacking, the general consensus is that a weakly nonlinear system is one whose output only weakly diverges from the output predicted by linearized models.

B. Single-Input Volterra Kernel Identification

In this paper, Silva's familiar impulse identification method for the first- and second-order discrete-time Volterra kernels is used:

$$\xi H_i[n] = 2 \Psi \{ \delta[n] \} + \frac{1}{2} \Psi \{ 2 \delta[n] \}$$

(7)

$$\sum_{k=0}^{N} (2\xi^2 H_1[n-k]) = \Psi \{ \delta[n] + \delta[n-k] \} - \Psi \{ \delta[n] \} - \Psi \{ \delta[n-k] \}$$

(8)

where \(\delta[n] \) is an impulse function of magnitude \(\xi \)

$$\delta[n] = \begin{cases} \xi & n = 0 \\ 0 & n \neq 0 \end{cases}$$

(9)

The identification of the first-order kernel \(H_1[n] \) is straightforward. Only two outputs due to inputs \(\delta[n] \) and \(2\delta[n] \) are required. The identification of the second-order kernel \(H_2[n, n] \) is more involved because multiple outputs due to inputs \(\delta[n] \) and \(\delta[n-k] \) for \(k = 0, 1, \ldots, N \) must be computed. Because of symmetry, for all \(k \)

$$H_2[n, n-k] = H_2[n-k, n]$$

(10)

C. Multi-Input Volterra Theory

The output \(y(t) \) of a continuous-time, causal, time-invariant, fading memory, nonlinear system \(\Psi \) due to \(m \) inputs

$$y(t) = \Psi \{ x_1(t), x_2(t), \ldots, x_m(t) \}$$

(11)

can be modeled using the \(p \)-th order, multi-input Volterra series

$$y(t) = \sum_{i=1}^{m} \mathbb{H}_i x_i(t)$$

$$= \sum_{i=1}^{m} \left\{ \int_{-\infty}^{\tau} H_i^1(t-\tau)x_i(\tau) \, d\tau \right\}$$

$$+ \sum_{j=1}^{m} \sum_{j_1=1}^{m} \left\{ \int_{-\infty}^{\tau_1} \int_{-\infty}^{\tau_2} H_{ij}^2(t-\tau_1, t-\tau_2)x_i(\tau_1)x_j(\tau_2) \, d\tau_1 \, d\tau_2 \right\}$$

$$+ \cdots$$

$$\times \prod_{i=1}^{m} \{ x_i(\tau_i) \, d\tau_i \}$$

(12)

where the \(p \)-th order, multi-input Volterra operator \(\mathbb{H}_i \) is defined as a \(m^p \)-fold summation of \(p \)-fold convolution integrals between the various combinations of inputs \(x_1(t), x_2(t), \ldots, x_m(t) \), and the \(p \)-th order, multi-input Volterra kernel \(H_{ij}^{p-k} \). Notice the appearance of superscripts on the \(p \)-th order, multi-input Volterra kernel \(H_{ij}^{p-k} \). These superscripts identify to which inputs the kernel corresponds. For example, a third-order kernel \(H_{ij}^3 \) corresponds to inputs \(x_i(t), x_j(t) \), and \(x_2(t) \). Volterra kernels \(H_{ij}^{p-k} \), where \(j_1 = j_2 = \cdots = j_p \), are called Volterra direct kernels. Volterra kernels with superscripts that do not match are called Volterra cross kernels. The presence of these Volterra cross kernels differentiates the multi-input Volterra series from the single-input Volterra series summarized in Sec. II.A.

For a uniformly sampled, discrete-time representation of the system \(\Psi \)

$$y[n] = \Psi \{ x_1[n], x_2[n], \ldots, x_m[n] \}$$

(13)

where \(n = 0, 1, \ldots, N \)

$$y[n] = y(t)|_{t=n\Delta T} = y(n\Delta T)$$

(14)

The output \(y[n] \) of a nonlinear system \(\Psi \) due to \(m \) inputs can be modeled using the \(p \)-th order, discrete-time, multi-input Volterra series

$$y[n] = \sum_{i=1}^{m} \mathbb{H}_i \frac{\prod_{i=1}^{m} x[k_i]}{\prod_{i=1}^{m} x[k_i]}$$

(15)

where the \(p \)-th order, discrete-time, multi-input Volterra operator \(\mathbb{H}_i \) is defined as a \(m^p \)-fold summation of \(p \)-fold discrete-time
convolutions between the various combinations of inputs \(x_1[n], x_2[n], \ldots, x_m[n]\) and the \(p\)th-order, multi-input, discrete-time Volterra kernel \(H_{jn}^{(p)}[n, \ldots, n]\). The difficulties associated with the identification of higher-order, multi-input, discrete-time Volterra direct and cross kernels are identical to those associated with the identification of higher-order, single-input, discrete-time Volterra kernels. In other words, only a second-order \((p = 2)\), multi-input Volterra series is practical

\[
y[n] = \sum_{j=1}^{m} \left(\sum_{l=0}^{n} H_j^{(2)}[n - l]x_j[l] \right) + \sum_{j_1=1}^{m} \sum_{j_2=1}^{m} \left(\sum_{k_1=0}^{n} \sum_{k_2=0}^{n} H_{j_1j_2}^{(2)}[n - k_1, n - k_2]x_{j_1}[k_1]x_{j_2}[k_2] \right)
\]

(16)

D. Multi-Input Volterra Kernel Identification

As in the previous section dealing with the single-input Volterra series, we use the impulse identification method for the first- and second-order direct and cross kernels:

\[
\xi_j H_j^{(1)}[n] = 2\Psi(\delta_j[n]) + \frac{1}{2} \Psi(2\delta_j[n])
\]

(17)

\[
\sum_{j_1=1}^{m} \sum_{j_2=1}^{m} \left(\sum_{k_1=0}^{n} \sum_{k_2=0}^{n} (2\xi_{j_1j_2} H_{j_1j_2}^{(2)}[n, n - k]) \right) = \Psi(\delta_{j_1}[n] + \delta_{j_2}[n - k]) - \Psi(\delta_{j_1}[n] - \delta_{j_2}[n - k])
\]

(18)

where \(\delta_j[n]\) is an impulse function corresponding to the \(j\)th input

\[
\delta_j[n] = \begin{cases}
\xi_j & n = 0 \\
0 & n \neq 0
\end{cases}
\]

(19)

Because of symmetry, for all \(k\)

\[
H_{j_1j_2}^{(2)}[n, n - k] = H_{j_2j_1}^{(2)}[n - k, n] \quad \text{for } j_1 = j_2
\]

\[
H_{j_1j_2}^{(2)}[n, n - k] = H_{j_2j_1}^{(2)}[n - k, n] \quad \text{for } j_1 \neq j_2
\]

(20)

III. Multi-Input Volterra Reduced-Order Model of 2 Degree-of-Freedom Airfoil

The 2 DOF oscillations in both pitch \(\alpha\) and heave \(h\) fully characterize the unsteady motion of a two-dimensional airfoil of chord \(c\) immersed in transonic flow, as illustrated in Fig. 1a. The aerodynamics of such an airfoil are described using the coefficient of lift \(C_L\) and moment \(C_M\), as shown in Fig. 1b. However, for the sake of brevity, in this paper we limit our discussion to the aerodynamic moment output only. Unlike the pitch degree of freedom, only a heave velocity \(h\) is capable of producing aerodynamic loading. Therefore, from a Volterra series ROM point of view, it is more appropriate to use \(h\), instead of \(\alpha\), as one of the inputs to the aerodynamic system:

\[
C_M[n] = C_{\alpha} \delta_\alpha[h[n]]
\]

(21)

To capture the nonlinear effects of the transonic flow regime, the traditional Volterra ROM approach has been to superimpose two second-order Volterra ROMs, one per each degree of freedom:

\[
C_M[n] = \sum_{k_1=0}^{n} H_\alpha[n - k_1] \delta_\alpha[k_1] + \sum_{k_2=0}^{n} H_h[n - k_2] \delta_h[k_2]
\]

(22)

where \(H_\alpha[n]\) and \(H_h[n]\) are the second-order Volterra cross kernels. All the required first- and second-order direct and cross kernels in Eq. (23) are identified using the impulse identification method summarized in Sec. II.D:

\[
\xi_\alpha H_\alpha^{(2)}[n] = 2C_{\alpha} \delta_\alpha[n] + \frac{1}{2} C_{\alpha} \delta_\alpha[n]
\]

(24)

\[
\xi_h H_h^{(2)}[n] = 2C_h \delta_h[n] + \frac{1}{2} C_h \delta_h[n]
\]

\[
\sum_{k_1=0}^{n} (2\xi_{\alpha} H_\alpha^{(2)}[n, n - k]) = C_{\alpha} \delta_\alpha[n] + \delta_h[n - k]
\]

\[
- C_{\alpha} \delta_\alpha[n] - C_{\alpha} \delta_h[n - k]
\]

\[
\sum_{k_1=0}^{n} (2\xi_{h} H_h^{(2)}[n, n - k]) = C_h \delta_h[n] + \delta_\alpha[n - k]
\]

\[
- C_h \delta_h[n] - C_h \delta_\alpha[n - k]
\]

\[
\sum_{k_1=0}^{n} (2\xi_{\alpha} \xi_{h} H_{\alpha h}^{(2)}[n, n - k]) = C_{\alpha} \delta_\alpha[n] + \delta_h[n - k]
\]

\[
- C_{\alpha} \delta_\alpha[n] - C_{\alpha} \delta_h[n - k]
\]

where \(\delta_\alpha[n]\) and \(\delta_h[n]\) are impulse functions corresponding to the pitch \(\alpha\) and heave velocity \(h\) inputs:

\[
\delta_\alpha[n] = \begin{cases}
\xi_\alpha & n = 0 \\
0 & n \neq 0
\end{cases}
\]

\[
\delta_h[n] = \begin{cases}
\xi_h & n = 0 \\
0 & n \neq 0
\end{cases}
\]

(26)
IV. Description of Test Case

To demonstrate the applicability of the multi-input Volterra series as a ROM method for nonlinear, multi-degree-of-freedom aerodynamic systems, we chose to model a symmetric NACA 0012 airfoil oscillating about a nonzero static angle of attack:

\[\alpha = \alpha_0 + \dot{\alpha} \sin(2k_\alpha \tau) \]

\[\dot{h} = h \sin(2k_h \tau) \]

The aerodynamics of this test case are characterized by the simultaneous application of inputs. Note the clear presence of a weak nonlinear effect approximately 1 deg. From the AGARD reports, this condition is satisfied at dynamic pitch amplitudes of approximately 1 deg.

Because the aim of this paper is to present a method of modeling multi-degree-of-freedom aerodynamic systems using the multi-input Volterra series, the airfoil motion must include heave. The main difference between the application of the multi-input Volterra series over the single-input Volterra series is the identification of cross kernels. Because we wish to focus on these cross kernels, it is helpful to select a dynamic heave velocity amplitude that would yield a heave velocity direct kernel approximately equal in magnitude to the pitch direct kernel. After several systematic CFD runs, it was found that a dimensionless heave velocity amplitude of 0.018 would achieve this requirement.

\[\alpha = 3.16 \text{ deg} + 4.59 \text{ deg} \sin(2k_\alpha \tau) \]

\[\dot{h} = 0.018 \sin(2k_h \tau) \]

where \(M = 0.6, k_\alpha = 0.0811, \) and \(k_h = 0.8k_\alpha. \)

V. CFD Using the Carleton Multiblock Solver

All CFD results presented in this paper were carried out using the Carleton multiblock (CMB) CFD code. The CMB code is a derivative of a code originally developed at the University of Glasgow, specifically tailored for transonic, time-marching aeroelastic analysis. The aerodynamics of the airfoil were modeled using the inviscid Euler equations. For further details, refer to Dubuc et al. [22] and Badcock et al. [23].

The NACA 0012 airfoil domain was discretized using a C-type 180 \times 33 Euler grid with 130 nodes on the airfoil. The surface nodes were at a distance of approximately 0.001 \(c \) off the airfoil surface. The mesh extended into the far field approximately 10\(c \) in all directions. The unsteady solutions were solved using a dimensionless time step \(\Delta \tau = 1.96, \) which corresponds to 20 time steps per period of pitch oscillation. This choice of mesh and time step was based on several mesh refinement studies carried out by Dubuc et al. [22], which showed that no significant accuracy improvements are gained at higher spatial or temporal discretizations.

Figure 2 compares the experimental and CFD outputs of the AGARD test case as described by Eq. (28); very good agreement was obtained. Errors are likely associated with the neglect of viscous forces and uncertainties in the experimental data [22, 23].

VI. Results and Discussion

A. Volterra Kernel Identification

As stated in the theoretical derivation of the Volterra series in Sec. III, the first- and second-order kernels identified using Eqs. (24) and (25) are illustrated in Figs. 3 and 4, respectively. From sensitivity studies summarized in Secs. VI.C and VI.D, both the first- and second-order kernels are identified using \(\Delta \tau = 2, \xi_1 = 0.5 \) deg, and \(\xi_2 = 0.009. \) On a single Intel Pentium 3.2 GHz desktop machine running Red Hat 2.6.9 with 1 GB of RAM, the identification of a single first-order and a single second-order kernel requires approximately 51 s (0.85 min) and 550 s (9.1 min) of CPU time, respectively. Because of the quickly decaying nature of the second-order kernels, only the first 10 terms are identified, that is, in Eq. (25), \(N = 10. \)

B. Multi-Input Volterra Reduced-Order Model of Transonic Airfoil

Figures 5a and 5b illustrate the CFD and Volterra ROM moment coefficients outputs due to the individual application of the pitch and heave inputs of Eq. (31), respectively. It should be noted that the moment coefficient due to the steady pitch of 3.16 deg has been subtracted from the unsteady results presented in this section. In both cases, the Volterra ROM, which includes both the first- and second-order kernels, performs better at modeling the nonlinear CFD output.

Figure 6 illustrates the CFD moment coefficient output due to the simultaneous application of pitch and heave inputs CFD[\(\alpha + h \)] and the superposition of outputs due to individual application of the pitch and heave inputs CFD[\(\alpha \)] + CFD[\(h \)]. We can clearly verify that, due to the nonlinear nature of the aerodynamic system, the superposition of the individual outputs does not accurately predict the output due to the simultaneous application of inputs. Note the clear presence of a
beat frequency in the aerodynamic moment coefficient resulting from the input frequency ratio being nearly equal to one. Figure 7 compares the simultaneous CFD\(\alpha\) + CFD\(h\) outputs with a Volterra ROM that only includes the direct kernels \(H_1^\alpha\) and \(H_1^h\). As expected, the superimposed output CFD\(\alpha + h\) is well predicted, but the simultaneous output CFD\(\alpha + h\) is not.

Figure 8 shows how the inclusion of cross kernels \(H_2^\alpha\) and \(H_2^h\) significantly improves the accuracy of the Volterra ROM in modeling the simultaneous response.

We can quantify the modeling performance of the Volterra ROMs using the \(L^2\) relative error norm, defined as

\[
\% \text{Error} = \sqrt{\frac{(\text{CFD}(\alpha + h) - \text{Volterra ROM})^2}{\text{CFD}(\alpha + h)^2}} \times 100
\]

Table 1 Volterra ROM modeling error norms

<table>
<thead>
<tr>
<th>ROM</th>
<th>% error</th>
</tr>
</thead>
<tbody>
<tr>
<td>({H_1^\alpha, H_1^h})</td>
<td>30.6</td>
</tr>
<tr>
<td>({H_1^\alpha, H_1^h, H_2^\alpha, H_2^h})</td>
<td>21.7</td>
</tr>
<tr>
<td>({H_1^\alpha, H_2^\alpha, H_2^h, H_2^\alpha, H_2^h})</td>
<td>12.1</td>
</tr>
</tbody>
</table>

Error norms for the various Volterra ROMs covered in this section are summarized in Table 1. As expected, the inclusion of the cross kernels significantly increases the accuracy of the Volterra ROM.
k/k_0 = 0 (nonlinear contribution to the static response), while the cross kernels \(H_2^{\phi\phi} \) and \(H_2^{\omega\omega} \) capture the first two intermodulation harmonics \(k/k_0 = 1.8 \) (i.e., \(k/k_0 = 1 + 0.8 \)) and \(k/k_0 = 0.2 \) (i.e., \(k/k_0 = 1 - 0.8 \)).

C. Effect of Time Step and Impulse Magnitude on Kernel Identification Accuracy

As demonstrated by Raveh [8] and more recently by Grewal and Zimcik [24], the impulse identification method of Eqs. (24) and (25) can be very sensitive to the choice of time step and impulse amplitude. Hence, to ensure accurate Volterra kernel identification, a sensitivity analysis with respect to time step and impulse amplitude was performed. However, due to time constraints, only pitch impulse amplitude \(\xi_\omega \) sensitivity was analyzed. Figure 10a shows error norms for a first- and second-order Volterra ROM whose kernels were calculated using \(\Delta \tau = 2 \) and four different pitch impulse amplitudes: \(\xi_\omega = 0.1, 0.5, 1, \) and 2.5 deg. Here, the \(L^2 \) relative error norm is defined as

\[
\text{Error} = \sqrt{\frac{\text{CFD}(\alpha + h) - \text{Volterra ROM}^2}{\text{CFD}(\alpha + h)^2}} \times 100
\]

where \(\text{CFD}(\alpha) \) is the CFD output due to a pitch input as specified by Eq. (29); \(\alpha = 3.16 \text{ deg} + 1 \text{ deg sin}(2k_\omega \tau) \), where \(M = 0.6 \), \(k_\omega = 0.0811 \), and \(\Delta \tau = 1.96 \). Observing Fig. 10a, it is clear that optimal performance is achieved with \(\xi_\omega = 0.5 \) deg.

D. Effect of Pitch and Heave Frequency Separation

Figure 11 illustrates Volterra ROM error norms for inputs specified by Eq. (32):

\[
\alpha = 3.16 \text{ deg} + 1 \text{ deg sin}(2k_\omega \tau) \quad \hat{h} = 0.018 \text{ sin}(2k_\omega \tau)
\]

where \(M = 0.6 \) and \(k_\omega = 0.0811 \) for four different heave reduced frequencies: \(\hat{k}_h = 0.2k_\omega, 0.4k_\omega, 0.8k_\omega \) and \(1.6k_\omega \). The Volterra ROMs were calculated using the optimal parameters determined earlier: \(\Delta \tau = 2, \xi_\omega = 0.5 \) deg and \(\xi_\omega = 0.009. \) The \(L^2 \) relative error norms are defined as

\[
\text{Error} = \sqrt{\frac{\text{CFD}(\alpha + \hat{h}) - \text{Volterra ROM}^2}{\text{CFD}(\alpha + \hat{h})^2}} \times 100
\]

In all cases, inclusion of Volterra cross kernels \(H_2^{\phi\phi} \) and \(H_2^{\omega\omega} \) significantly improves modeling performance.

E. Curse of Dimensionality

The total CPU time \(t_{ID} \) required to identify a second-order Volterra series ROM of an \(N \)-degree-of-freedom system equals

\[
t_{ID} = N \cdot t_{fl} + N^2 \cdot t_{H},
\]

where \(t_{fl} \) and \(t_{H} \) are CPU times required to identify a single first-order and a single second-order Volterra kernel, respectively. Because, in general, \(t_{fl} > t_{H} \), the total identification time can become very high and render the Volterra ROM approach impractical for higher degree-of-freedom systems. However, its possible that under certain circumstances this problem can be avoided. For example, consider the problem of transonic mode-coupling instability, flutter, of a complete aircraft configuration governed by \(N \) modal degrees of freedom. It is well known that, in many cases, the onset of flutter, and the modes involved in the instability, can be predicted using linear (dynamically linear) methods [1]. For example, linear, first-order Volterra ROMs have been demonstrated to successfully predict transonic flutter of complete aircraft configurations [3]. Identification of a second-order Volterra ROM is only necessary when the evolution of the instability is of interest, for example, determination of limit cycle oscillation amplitude and frequency. For such a scenario, it would only be necessary to identify second-order kernels corresponding to the two modes involved in the instability. Hence, the total computational time for such a model would equal

\[\text{Fig. 11 Volterra ROM modeling error norms vs heave frequency.}\]
\[t_{\text{ID}} = N \cdot t_{H1} + 2^2 \cdot t_{H2} \] \hfill (35)

where only four second-order kernels, two direct and two cross kernels, are necessary. Identification of \(N \) first-order kernels is relatively trivial.

VII. Conclusions

The multi-input Volterra series differs from the classical Volterra series through its inclusion of cross kernels. These cross kernels capture the intermodulation harmonics when multiple degrees of freedom of a nonlinear system are perturbed simultaneously. The applicability of the multi-input Volterra series to nonlinear aeroelastic systems was demonstrated using the transonic, unsteady, two-dimensional, 2 DOF NACA 0012 airfoil. For the specific AGARD test case analyzed, the identified cross kernels significantly increased the modeling accuracy of the Volterra ROM.

References

J. Cooper
Associate Editor